US009385979B1

a2 United States Patent 10) Patent No.: US 9,385,979 B1
Chung et al. 45) Date of Patent: Jul. 5, 2016
(54) CUSTOMIZING POSTS BY ACTIVITY TYPE 7,610,287 Bl 10/2009 Dean et al.
AND CLIENT TYPE 7,742,468 B2 6/2010 Vagelos
2002/0137490 Al 9/2002 Gallant
. o . 2002/0143874 Al 10/2002 Marquette et al.
(75) Inventors: Irene C.hung, Mountain View, CA (US); 5004/0258220 Al 12/2004 Levine et al.
Ryo Misha Urano, Sunnyvale, CA (US) 2005/0152521 Al 7/2005 Liljestrand
2006/0026288 Al 2/2006 Acharya et al.
(73) Assignee: Google Inc., Mountain View, CA (US) 2006/0077957 Al 4/2006 Reddy et al.
2006/0206604 Al 9/2006 O’Neil et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 405 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 13/537,647 WO W002079984 10/2002
(22) Filed: Jun. 29, 2012 OTHER PUBLICATIONS
R Adamic et al., “A Social Network Caught in the Web,” Internet
Related U.S. Application Data Journal, First Monday, Jun. 2, 2003, pp. 1-22, vol. 8, No. 6.
(60) Provisional application No. 61/614,717, filed on Mar. (Continued)
23,2012.
(51) Int.ClL Primary Examiner — Brian] Gillis
HO4L 12/58 (2006.01) Assistant Examiner — Steve Lin
(52) US.CL (74) Attorney, Agent, or Firm — Patent Law Works LLP
CPC . HO04L 51/06 (2013.01)
(58) Field of Classification Search 7 ABSTRACT
CPC GO6F 17/30; GO6F 15/16; HO4L 51/00; A system and method for per-client, per-type customizations
HO4L 61/00 to posts in an activity stream comprises an extraction pipeline
USPC e 709/204, 219, 246 and a rendering pipeline. The extraction pipeline can include
See application file for complete search history. a library of embedded code, data type taxonomy and an
embed converter. The data type taxonomy is coupled to an
(56) References Cited activity source to receive activity information, and to produce

U.S. PATENT DOCUMENTS

a first protocol buffer. The embed converter produces a type-
specific protocol buffer from the first protocol buffer and
embedded code based in part upon the type of activity and the

6,130,938 A 10/2000 Erb : : g A
6,192,119 Bl 2/2001 Wilson type of client. The type-specific protocol buffer is provided to
6,697,478 Bl 2/2004 Meldrum et al. the client to process activity information or present activity
g;gg’gig g} . g; 3883 ?us}utlelll 2091203 information. The disclosure also includes a method for pro-
,760, anetal. ..ol . . . e .
6’990’629 Bl * 1/2006 Hea_ney et a_l """""""" 715/200 CeSSIHg a post n an aCthlty Stream ona per Cllent’ per t}/pe
7,106,848 Bl 9/2006 Barlow et al. basis.
7,366,990 B2 4/2008 Pitroda
7,555,110 B2 6/2009 Dolan et al. 25 Claims, 12 Drawing Sheets
. 1010
100 Social Network 1ot
\ Type and Client Server 101a -
Customization Social Network Social
System For Posts Software/Application Graph
103 109 125

Third Party Server
107

Micro Blogging
Server
121

Profile Server 127

SMS/MMS Server
129

Web Server 137 138

Client Device 115a Client Client
ien ient

Web Browser Device Device M Server 131
1150 1180

136
t I o000 t Search Server
Search Engine
User User User 143

120a 1200 120n

US 9,385,979 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0061486 Al*
2007/0067495 Al*
2007/0127631 Al
2007/0171898 Al
2007/0173236 Al
2007/0248077 Al
2008/0056475 Al
2008/0192656 Al
2010/0218087 Al* 82010 Knobel ... 715/236
2011/0098156 Al 4/2011 Ngetal.

2011/0307522 Al* 12/2011 Futtyetal.cooeee. 707/802
2012/0079023 Al* 3/2012 Tejada-Gamero etal. ... 709/204
2013/0095864 Al* 4/2013 Marovets 455/466
2013/0298217 Al* 11/2013 Jasperetal. 726/9
2014/0372518 Al* 12/2014 Mooreetal. 709/203

OTHER PUBLICATIONS

3/2007 Trinhetal.cocooon. 709/246
3/2007 LeVY ceovvvireecineeen 709/246
6/2007 Difiglia
7/2007 Salva
7/2007 Vishwanathan et al.
10/2007 Mabhle, Jr. et al.
3/2008 Brannick et al.
8/2008 Vagelos

Agarwal et al., “Enabling Real-Time User Interests for Next Genera-
tion Activity-Oriented Social Networks,” Thesis submitted to the
Indian Institute of Technology Delhi, Department of Computer Sci-
ence & Engineering, 2005, 70 pgs.

Anwar et al., “Leveraging ‘Social-Network’ Infrastructure to
Improve Peer-to Peer Overlay Performance: Results from Orkut,”
University of Illinois at Urbana-Champaign USA, 2005, 9 pgs.

AT &T Personal Reach Service: Benefits and Features, Mar. 29,2010,
7 pgs.

AT&T Personal Reach Service: Personal Reach Service, Mar. 29,
2010, 2 pgs.

Baird et al., “Neomillennial User Experience Design Strategies: Uti-
lizing Social Networking Media to Support “Always On” Learning
Styles,” J. Educational Technology Systems, vol. 34(1), 2005-2006,
Baywood Publishing Co., Inc., pp. 5-32.

Boyd, et al., “Social Network Sites: Definition, History, and Schol-
arship,” Journal of Computer-Mediated Communication, Interna-
tional Communication Association, 2008, pp. 210-230.

Churchill et al., “Social Networks and Social Networking,” IEEE
Computer Society, Sep.-Oct. 2005, pp. 14-19.

Cohen et al., “Social Networks for Creative Collaboration,” C&C
’05, Apr. 12-15, 2005, pp. 252-255, London, United Kingdom.
Decker et al., “The Social Semantic Desktop,” Digital Enterprise
Research Institute, DERI Galway, Ireland, DERI Innsbruck, Austria,
DERI Technical Report, May 2, 2004, 7 pgs.

Dukes-Schlossberg et al., “Battlefield Awareness and Data Dissemi-
nation Intelligent Information Dissemination Server,” Air Force
Research Laboratory, Rome Research Site, Rome, NY, Nov. 1, 1999,
31 pgs.

Eagle et al., “Social Serendipity: Proximity Sensing and Cueing,”
MIT Media Laboratory Technical Note 580, May 2004, 18 pgs.
Erickson et al., “Social Translucence: Using Minimalist Visualiza-
tions of Social Activity to Support Collective Interaction,” Designing
Information Spaces: The Social Navigation Approach, Springer-
verlag: London, 2003, pp. 1-19.

Gross et al., “Information Revelation and Privacy in Online Social
Networks,” WPES *05, Alexandria, Virginia, Nov. 7, 2005, pp. 71-80.
Hammond et al., “Social Bookmarking Tools (I),” D-Lib Magazine,
Apr. 2005, vol. II, No. 4, ISSN 1082-9873, 23 pgs.

Heer et al., “Vizster: Visualizing Online Social Networks,” Univer-
sity of California, Berkeley, 8 pgs.

International Search Report, International Application No. PCT/
US2008/005118, Sep. 30, 2008, 2 pgs.

Leonard, “You Are Who You Know,” Internet, retrieved at http://
www.salon.com, Jun. 15, 2004, 15 pgs.

LiveJournal, “FAQ #163: How Do I Find a Syndicated Account?”
Last Updated: thebubba, Jan. 6, 2004, 2 pgs.

Marwick, “Selling Your Self: Online Identity in the Age of a Com-
modified Internet,” University of Washington, 2005, 192 pgs.
MediaSift Ltd., DataSift: Realtime Social Data Mining Platform,
Curate and Data Mine the Real Time Web with DataSift, Dedipower,
Managed Hosting, May 13, 2011, 1 pg.

Metcalfetal., “Spatial Dynamics of Social Network Evolution,” 23rd
International Conference of the System Dynamics Society, Jul. 19,
2005, pp. 1-13.

Mori et al., “Real-world Oriented Information Sharing Using Social
Networks,” Group *05, Sanibel Island, Florida, USA, Nov. 6-9, 2005,
pp. 81-84.

Murchu et al., “Online Social and Business Networking Communi-
ties,” Digital Enterprise Research Institute DERI Technical Report,
National University of Ireland, Aug. 8, 2004, 22 pgs.

Nardi et al., “Blogging as Social Activity, or, Would You Let 900
Million People Read Your Diary?” CSCW’04, Nov. 6-10, 2004, vol.
6, Issue 3, Chicago, Illinois, pp. 222-231.

Neumann et al., “Semantic social network portal for collaborative
online communities,” Journal of European Industrial Training, 2005,
Emerald Group Publishing, Limited, vol. 29, No. 6, pp. 472-487.
Ring Central, Inc., Internet, retrieved at http://www.ringcentral .com,
Apr. 19,2007, 1 pg.

Singh et al., “CINEMA: Columbia InterNet Extensible Multimedia
Architecture,” Department of Computer Science, Columbia Univer-
sity, pp. 1-83.

Steen et al., “Development of we-centric, context-aware, adaptive
mobile services requires empathy and dialogue,” Freeband FRUX,
Oct. 17, 2005, Internet Journal, Netherlands, pp. 1-4.

Superfeedr Track, Internet, retrieved at http://blog.superfeedr.com/
track/filter/xmpp/pubsubhubbub/track, May 13, 2011, 8 pgs.
Twitter Blog: Tracking Twigger, Internet, retrieved at http://blog.
twitter.com/2007/09/tracking-twitterhtml, May 13, 2011, 2 pgs.
Twitter Announces Fire Hose Marketplace: Up to 10K Keyword
Filters for 30 Cents, Internet, retrieved at http://www.readywriteweb.
com/archives/twitter__announces_ fire_ hose__marketplace_up__
to__10k.php, May 13, 2011, 7 pgs.

Van Eijk et al., “We-centric, context-aware, adaptive mobile service
bundles,” Freeband, Telematica Instituut, TNO telecom, Nov. 30,
2004, 48 pgs.

Wenger et al., “Technology for Communities,” CEFRIO Book Chap-
ter v 5.2, Jan. 18, 2005, pp. 1-15.

* cited by examiner

US 9,385,979 Bl

Sheet 1 of 12

Jul. §5,2016

U.S. Patent

| @4nbi4
ot qo0ct B0Cl
Jasn 1SN FENTR
H 000 H H
US1T aS11 05T TTL Janle o
RV ETy! 8o1ne(] lasmolg GaM ot fet s e
1o udID
G| 9d1Asg 1U3ND
IZ1 19nIsS 3)1joid
AN
80|
8¢l Ter
Janieg
901 Buibbolg oJoIp
Zcl
01
Joneg Aued payl
0l
Bor c0l

uonesi|ddy/eiemyos
JJOMIBN [BIDOS

BL0J Jones
HIOMISN [Bl20S

[32%
aulbug yoieag
Scl
JaAleg yoJeag
9cl
TET Jon8S NI
B6cl el
Janieg SININ/SINS
0l
acl
748
ydelio
[elo0g
qLo1—]
upor—

S1S0d 10 W)SAS
uoeZIWoISNYD

€0t

JuslD pue adA | 4/

0ol

US 9,385,979 B1

Sheet 2 of 12

Jul. §5,2016

U.S. Patent

001 S92.nog AlANoY

172
JBAIDG 18YD) 09PIA

V¢ 2Inbi

orl
JBAIBS BWES)

ST
18A19S g

gel €0t

JanIeg yoJess

UoIIBZIWOISND U8l pue adA]

S1S0d J04 WwajsAg "
I

TCT JoA18S | _\\i
“ UG T 991A8Q JUSID
6cl Y0 _
¥0¢ ot
JanIag SNIN/SNS auljedid Buuepusy " ®
72T Jenias ajyoud _ ®
I
e e | 01
JOAIBS auljadid uonoenx3 a— Low\swmmrnwi

BuibBo|g oo

EGL | 32IASQ 1US!IO

01

Jonieg Aued paiyL

BT0T JoAIeS
}IOMISN [e100S

Joow

US 9,385,979 B1

Sheet 3 of 12

Jul. §5,2016

U.S. Patent

091 $92.n0S AlIAIDY

17223
JBAIBS 1eYD 08PIA

ovl
JoAleS awen)

€0l
S1S0d 104 WoisAg

uoneziwolsny jusi|) pue adA |

ST
JBAIBS gapn

Gel
Jenlag yosess

TET 19AJ9S N

6Cl
18n8S SWNISNS

72T Jenies 9|oid

x4’
Janiag

Buibboig ouoiy

01
JaAleg Aued paiyl

B10] Jonles
YIOMIBN |eI100S

(%4
Awouoxe | adA] eleq

OO0

T2 JeusAu0D paquig

0l¢
:=Telezg)
pappaquw jo Aleiqr

20¢
aulpedid uonoesxg

d¢ @4nbi4

UGL 1 931AQ Ul

P\ oGl
Jasmolg gopA

BGL | 9d1A8(Q JUSID

N

q00¢

US 9,385,979 B1

Sheet 4 of 12

Jul. §5,2016

00} $92.n0S AlAOY

72
J8AIBS JeyD 03PIA

ovl
JOAISS BWERD)

yiqN
JOAISS GOMA

ol
S1S0d 104 WaIsAg

UoNBZIWOISNY JUdI[D pue odA|

GET
JaAIag yo.ieag

TET J18A18S NI

(¥4
Bass SINW/SINS

¢l JOAISS 9Jljold

x4’
JBAIBS

BuibBolg ool

01
Joniag Aued paiyL

BT0] Jenleg
yJOMIBN [e100S

¥971 19poou]

ROy

Z97] Jepoosg

9GT
abeloig
a1eldwa] woisny)

0¢
auljadid Bulspuay

D¢ aInbi

UGl adlaag judl|D

£y 05T
Josmo.g qapn

EG| | 93IA8Q U9ID

Joom

U.S. Patent

U.S. Patent Jul. 5, 2016 Sheet 5 of 12 US 9,385,979 B1

103\
4 A
J_ 220
| Library of Embedded |
102 > Codes |
[Network IF Module L___4e __
etwor u
233 «—
1 Custom Template |
plate
I
Memory 237 I Storage 156
Extraction Pipeline
202 ||l | mmmee__
| Activity Database |
360 |
Rendering Pipeline L=
204
Storage 239
Processor 235 [Library of Embedded |
I Codes |
| ___210 __ |
P
I Custom Template :
| Storage 156 I
| Activity Database :
| 360 |
\/

Figure 3A

U.S. Patent Jul. 5, 2016 Sheet 6 of 12 US 9,385,979 B1

202

N

Extraction Pipeline

Activity Streams Backend Activity Streams Front End

I 1
| | I |
I 216 | I 212 |
: Activity Source : : :
Interface Module <—|—>
| 302 I <JI—> Embed Converter 214 :
I 202
| | I |
| Data Type Taxonomy | | I
| 218 T Client Interface |
| | [T Module 304 |
| | I I
———————————— — I____________I
v

Figure 3B

U.S. Patent Jul. 5, 2016 Sheet 7 of 12 US 9,385,979 B1

204
N A

221
\ e

Rendering Pipeline

Activity Streams Backend
154

Activity Streams Front End
152

Document Activity

Collector — >
352

<> Decoder 162

Calendar Activity
Collector
354

Other Source Activity
Collector 358

[
[
[
[
[
[
[
Activity Collector 356 II
|
|
<>
|
|
|
|

Encoder 164 >

|
|
|
I
I
I
I
I
I
I
I
I
I Social Network
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 3C

US 9,385,979 B1

Sheet 8 of 12

Jul. §5,2016

U.S. Patent

 9.nbi4

[444
ojoud
olnads-adA L

+

0cv
0104d olj10ads-adA) 1810

0] SSpP02 pappsqus ppy

457
asuodsal sajelousab

pue }sanbal $s920.d

+

157
0jo.d Bloewayog
oLIBUDD)

+

91 usI
pue adA} Joj 0joid 8jea.)

<+—01|

Q07 UONoB MalAald YUl

—_—— e e e e e e e e e e e e e e e e Y e -

3z o1edwa |
a1j109dg adA |

¢y 9eldws |
malrald aepdn

¥0v
74N panddns Jesn

Z0V Xoq a.eys

0%

-——T907

091 921n0g Aoy

c0C
auladid uonoexg

714N palddns Jasn

Z0% X0q Jeys

[T 901A9(JUSIID

US 9,385,979 B1

Sheet 9 of 12

Jul. §5,2016

U.S. Patent

816
AUAIOY 81ea1D

097 @24nos Ajanoy

— e — —— ——— — — — — — — — — — — — — — — {— — — — — — — — —

G a.nbi4

2%
ojo.d BloBwaydg
NEINETS)
A

F4%]
0j0.id ousuab 0] 1sAU0D)

A

01S6
ojo.d
olyloads-adA|
A
wﬁ_vm

0G uonae 1s0d

<105

c0C
auljadid uonoenx3

205
uoljewlIoU| 81Bys

¢0p X0q sJeys

L1 8d1A8Q JuslD

U.S. Patent

600

\

Jul. 5, 2016 Sheet 10 of 12

(START)
v

Receive activity information,
activity type and client type
602

Y

Encode info and type and store
in backend
604

v

Retrieve encoded data from
backend
0606

v

Decode encoded data at
frontend
608

Y

Retrieve custom template and
JavaScript for activity type and
client type
610

Y

Send activity information,
custom template and script to
client
612

Y

Render custom activity at client
using data, custom template
and script
614

Y

(eno)

Figure 6

US 9,385,979 B1

U.S. Patent Jul. 5, 2016 Sheet 11 of 12 US 9,385,979 B1

700

\ C ST,:RT)

Receive activity information
102

Y

Determine activity type
104

I~ Store custom template and |
script if new activity type |
706 :

Serialize activity information
and activity type
708

Store/send serialized data and
type at backend
712

!
(eno)

Figure 7

U.S. Patent

800

\

Jul. 5, 2016 Sheet 12 of 12

(START)
!

US 9,385,979 B1

Retrieve encoded data from backend
802

v

De-serialize encoded data to produce
a custom proto
804

v

Send custom proto to client
806

v

Extract namespace field value
808

v

Use namespace value and client type
to identify a custom template
810

v

Retrieve custom template and install
with JavaScript for interactivity
812

v

Populate custom template with data
and display
814

v

(Eeno)

Figure 8

US 9,385,979 B1

1
CUSTOMIZING POSTS BY ACTIVITY TYPE
AND CLIENT TYPE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 USC §119(e) to
U.S. Application No. 61/614,717, entitled “Customizing
Posts by Activity Type and Client Type” filed Mar. 23, 2012,
the entirety of which is herein incorporated by reference.

BACKGROUND

The present disclosure relates to electronic communication
and the delivery of activity streams. In particular, the present
disclosure relates to per-client, per-type customizations to
posts in an activity stream.

Users once operated their computing devices with a single
browser showing a single webpage, new methods for deliv-
ering information such as activity on social networks have
been developed. For example, new user interfaces in social
networking and messaging tools provide new user interfaces
for delivering an activity stream of information. From this
activity stream user interface, users can share links, photos,
videos, status messages and comments organized in streams
or conversations and visible in the user’s inbox.

Current systems and methods for providing these user
activities have been limited to utilizing a predefined and fixed
format for sending activity information from the activity
sources and presenting the activity information at the client
device. Attempts to customize presentation of the activity
information and possible actions related to the activity infor-
mation are difficult and must be done manually. This is not a
trivial process and requires changes to the presentation tem-
plate, the data format, and the JavaScript classes. Further-
more, there are new actions that can be taken in response to
different activities (e.g., posts) that are addressed by current
methods for processing activities.

SUMMARY

The present disclosure overcomes the deficiencies and
limitations of the prior art at least in part by providing a
system and associated methods for per-client, per-type cus-
tomizations to posts in an activity stream. In some examples,
a system for per-client, per-type customizations comprises an
extraction pipeline and a rendering pipeline. The extraction
pipeline can include a library of embedded codes, data type
taxonomy and an embed converter. The data type taxonomy is
coupled to an activity source to receive activity information,
and to produce a first protocol buffer. The embed converter
produces a type-specific protocol buffer from the first proto-
col buffer and the embedded code based in part upon the type
of activity and the type of client. The type-specific protocol
buffer is provided to the client device to process activity
information or present activity information. The present dis-
closure also includes a method for processing a post in an
activity stream including: receiving a client type correspond-
ing to a client device; receiving activity information from an
activity source; receiving an activity type; creating a first
protocol buffer using the activity type and the activity infor-
mation; adding embedded code to create a second protocol
buffer, the embedded code selected based in part upon the
client type and the activity type; and sending the second
protocol buffer for rendering of the activity information.

10

15

20

25

30

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure is illustrated by way of example, and not by
way of limitation in the figures of the accompanying drawings
in which like reference numerals are used to refer to similar
elements.

FIG. 1 is a high-level block diagram illustrating an archi-
tecture including a system for per-client, per-type customiza-
tions to posts in an activity stream according to some embodi-
ments of the present disclosure.

FIGS. 2A-2C are block diagrams of the architecture
including a system for per-client, per-type customizations for
posts according to some embodiments of the present disclo-
sure.

FIG. 3A is a block diagram illustrating a hardware archi-
tecture for per-client, per-type customizations to posts
according to some embodiments of the present disclosure.

FIG. 3B is a block diagram illustrating an extraction pipe-
line according to some embodiments of the present disclo-
sure.

FIG. 3C s ablock diagram illustrating a rendering pipeline
according to some embodiments of the present disclosure.

FIG. 4 is a sequence diagram of a preview action of an
extraction pipeline according to some embodiments of the
present disclosure.

FIG. 5 is a sequence diagram of a share operation of an
extraction pipeline according to some embodiments of the
present disclosure.

FIG. 6 is a flowchart of a method for storing and rendering
custom posts in the activity stream according to some
embodiments of the present disclosure.

FIG. 7 is a flowchart of a method for storing activity infor-
mation and an activity type in an activity streams backend
according to some embodiments of the present disclosure.

FIG. 8 is a flowchart of a method for rendering custom
posts in the activity stream according to some embodiments
of the present disclosure.

DETAILED DESCRIPTION

Example Overview

The description includes a system and associated methods
for per-client, per-type customizations to posts in an activity
stream. In some embodiments, the system includes an extrac-
tion pipeline and a rendering pipeline. In some examples, the
extraction pipeline receives activity information from an
activity source (e.g., a social network server, a search server,
a web server, a third party server, etc.). The extraction pipe-
line processes the activity information to create a first proto-
col buffer. The term protocol buffer as used herein encom-
passes its plain and ordinary meaning including, but not
limited to, a mechanism for encoding structured data in an
extensible format. In one embodiment, the first protocol
buffer is a generic schema.org protocol buffer. In another
embodiment, the first protocol buffer is a serialization format
with an interface description language. The extraction pipe-
line adds embedded code to the first protocol buffer and
produces a type-specific protocol buffer from the first proto-
col buffer. For example, the extraction pipeline processes the
generic schema.org protocol buffer and then converts it to a
type-specific protocol buffer based in part upon an activity
type and a client type. In general, embedded code refers to
embedded code, files, data, objects or other information. In
some embodiments, embedded code includes a type-specific
protocol buffer, Java, JavaScript, one or more custom tem-
plates, and custom styling. The extraction pipeline provides
the type-specific protocol to the client device for processing

US 9,385,979 B1

3

or presenting the activity information. For example, the client
device processes the type-specific protocol buffer to generate
a type-specific template for displaying the activity informa-
tion.

In some embodiments, the extraction pipeline receives a
client type corresponding to a client device, activity informa-
tion and an activity type for the activity information from the
client device. The extraction pipeline creates a type-specific
protocol buffer based in part upon the client type and the
activity type, and converts the type-specific protocol buffer to
a generic protocol buffer. The extraction pipeline sends the
generic protocol buffer to an activity source, causing the
activity source to create an activity.

In some embodiments, the rendering pipeline retrieves
activity information from one or more activity sources, and
encodes the activity information and an activity type for the
activity information. Examples of an activity type include,
but not limited to, an activity type for posts from a particular
source (e.g., a social network), an activity type for posts from
asecond source (e.g., a blog), an activity type for information
that has a unique set of actions (e.g., the sharing of a photo)
and an activity type for a particular online service, etc. The
rendering pipeline encodes the activity information and the
activity type into encoded information, and stores the
encoded information in a storage device. For example, the
rendering pipeline serializes the activity information into an
encoded message protocol buffer (general data format). Upon
receiving a request for an activity stream from a client device,
the rendering pipeline retrieves the encoded information and
decodes the encoded information. The rendering pipeline
retrieves a custom template and a script based in part upon the
activity type for the activity information and the client type
for the client device. The rendering pipeline sends the
decoded activity information, the custom template and the
script to the client device, causing the client device to render
a custom activity (e.g., a custom post) to a user using the
decoded activity information, the custom template and the
script.

System Overview

FIG. 1 is a high-level block diagram illustrating an archi-
tecture 100 including a system 103 for per-client, per-type
customizations to posts (also referred to herein as the cus-
tomization system 103 or type and client customization sys-
tem for posts 103) in an activity stream according to some
embodiments of the present disclosure. The illustrated archi-
tecture 100 includes client devices 115a, 1155, 115 (also
referred to herein individually and collectively as 115) that
are accessed by users 120a, 1205, 120% (also referred to
herein individually and collectively as 120), one or more
social network servers 101a-101% (also referred to herein
individually and collectively as 101) and the system 103 for
per-client, per-type customizations. In the illustrated embodi-
ment, these entities are communicatively coupled via a net-
work 105. Moreover, it should be recognized that while the
present disclosure is described below primarily in the context
of activities related to the social network server 101, the
present disclosure is applicable to any type of online commu-
nications.

The client devices 1154, 11556, 1157 in FIG. 1 are used by
way of example. While FIG. 1 illustrates three client devices
115a, 1155, 115n, the present disclosure applies to any sys-
tem architecture having one or more client devices 115.
Although only three client devices 115 are illustrated, any
numbers of client devices 115 are available to any number of
users 120. Furthermore, while only one network 105 is
coupled to the client devices 115, the social network server
101, the system 103 and the third party server 107, in practice

20

25

40

45

4

any number of networks 105 can be connected to the entities.
Furthermore, while only one third party server 107 is shown,
the architecture 100 could include one or more third party
servers 107.

In some embodiments, the social network server 101a is
coupled to the network 105 via signal line 104. The social
network server 101a also includes a social network software/
application 109. It will be recognized that though only three
social network servers 101a-101# are shown, any number of
social network servers 101 may be present. A social network
is any type of social structure where the users are connected
by a common feature. The common feature includes relation-
ships/connections, e.g., friendship, family, work, an interest,
etc. The common features are provided by one or more social
networking systems, such as those included in the architec-
ture 100, including explicitly defined relationships and rela-
tionships implied by social connections with other online
users, where the relationships form a social graph 125. In
some examples, the social graph 125 can reflect a mapping of
these users and how they are related. Furthermore, it should
be understood that social network server 101a and social
network software/application 109 are representative of one
social network and that there are multiple social networks
1015 . . . 101z coupled to the network 105, each having its
own server, application and social graph. For example, a first
social network is more directed to business networking, a
second is more directed to or centered on academics, a third is
more directed to local business, a fourth is directed to dating
and others of general interest or a specific focus.

While shown as stand-alone server in FIG. 1, in other
embodiments all or part of the system 103 for per-client,
per-type customizations could be part of the third party server
107 that is connected to the network 105 via signal line 106.
The system 103 interacts with the other servers 101, 107,121,
127,129,131, 135, 137 via the network 105. The system 103
is also coupled for communication with the client device
115a, which is connected to the network 105 via signal line
108. The user 120q interacts with the client device 115a.
Similarly, the client device 1155 is coupled to the network
105 via signal line 112 and the user 1205 interacts with the
client device 1155. It should be recognized that the system
103 for per-client, per-type customizations can be stored in
any combination of the devices and servers, or in only one of
the devices or servers.

The network 105 is a conventional type, wired or wireless,
and may have any number of configurations such as a star
configuration, token ring configuration or other configura-
tions. Furthermore, the network 105 may comprise a local
area network (LAN), a wide area network (WAN) (e.g., the
Internet), and/or any other interconnected data path across
which multiple devices may communicate. In yet another
embodiment, the network 105 may be a peer-to-peer network.
The network 105 may also be coupled to or includes portions
of'a telecommunications network for sending data in a variety
of different communication protocols. In yet another embodi-
ment, the network 105 includes Bluetooth communication
networks or a cellular communications network for sending
and receiving data such as via short messaging service
(SMS), multimedia messaging service (MMS), hypertext
transfer protocol (HTTP), direct data connection, WAP,
email, etc.

The system 103 for per-client, per-type customizations
interacts with other systems 107,115, 121, 125,127,129, 131
and 135 to retrieve/receive activity information or an activity
stream and generate information or messages. The system
103 is coupled to the network 105 by signal line 102. The
system 103 cooperates with the client device 115 to generate

US 9,385,979 B1

5

and present user interfaces that allow the user 120 to view the
activity stream. In some embodiments, the system 103
receives activity information from the other systems 107,
121, 125, 127,129, 131 and 135. The customization system
103 processes this information to generate the activity stream.
The customization system 103 interacts with the user 120 via
client devices 115 to present the promotion information. For
example, the customization system 103 interacts with the web
browser 150 of the client devices 115 to receive inputs and
generate user interfaces as will be described in more detail
below. In another example, the customization system 103
generates activity messages and promotional messages and
sends replies or commands to the related electronic commu-
nications from a Short Message Service (SMS)/Multimedia
Messaging Service (MMS) server 129, an instant messaging
(IM) server 131, a web server 137, and/or the third party
server 107. In yet another example, the customization system
103 also receives data related to electronic communication
from a search server 135 that includes a search engine 143 and
is coupled to the network 105 via signal line 136. In some
embodiments, the search server 135 includes a search engine
143 for retrieving results that match search terms from the
Internet. The web browser 150 and the customization system
103 are used to manage and send data to and from the third
party server 107 via signal line 106, the micro-blogging
server 121 via signal line 122, the profile server 127 via signal
line 128, the client devices 115 via signal lines 108 and 112,
the social graph 125 via signal line 126, the SMS/MMS server
129 via signal line 130, the IM server 131 via signal line 132
and the web server 137 via signal line 138. Although depicted
in FIG. 1 as separate from the social network server 101 and
the social network application 109, it should be understood
that in some embodiments, the customization system 103
could be part of the social network server 101 or the social
network application 109.

The system 103 for per-client, per-type customizations is
particularly advantageous because it provides per-client cus-
tomization. Per-client customizations enable the possibility
of many different types of client (e.g. desktop, native mobile,
mobile app, tablet, etc.) on the same codebase. The customi-
zation system 103 is advantageous because it: 1) provides
greater code reuse via common building-block components;
2) provides a single system/solution; 3) allows multiple
teams/individuals to develop custom posts standalone and in
parallel; 4) supports multi-client use cases; 5) provides built-
in support for common leak protection; and 6) provides built-
in support for easy late-loading to minimize downloads and
reduce latency.

In some embodiments, the social network server 101, the
customization system 103, the third party server 107, the
micro-blogging server 121, the profile server 127, the SMS/
MMS server 129, the IM server 131, the search server 135 and
the web server 137 can be any computing devices such as
hardware servers including a processor, memory, and net-
work communication capabilities. The client device 115a,
11556 . . . 1157 can be a computing device, for example, a
laptop computer, a desktop computer, a tablet computer, a
mobile telephone, a personal digital assistant (PDA), amobile
email device, a portable game player, a portable music player,
atelevision with one or more processors embedded therein or
coupled thereto or any other electronic device capable of
accessing a network.

Customization System 103

FIGS. 2A-2C are block diagrams of the architecture 200a,
20056 and 200¢ including a system 103 for per-client, per-type
customizations for posts according to some embodiments of
the present disclosure. FIGS. 2A-2C show the customization

30

35

40

45

50

55

6

system 103 in more detail. In FIGS. 2A-2C, like reference
numerals have been used to reference like components with
the same or similar functionality that has been described
above with reference to FIG. 1. Further, since those compo-
nents have been described above that description will not be
repeated here. In some embodiments, the plurality of client
devices 1154-1157 includes the web browser 150 and is
coupled for communication with the customization system
103. The customization system 103 and the web browsers 150
cooperate to generate and present for the user the posts of the
present disclosure. The customization system 103 comprises
an extraction pipeline 202 and a rendering pipeline 204. The
activity sources 160 include one or more from the group of the
social network server 101, the third party server 107, the
micro-blogging server 121, the profile server 127, the SMS/
MMS server 129, the IM server 131, the search server 135 and
the web server 137, all of which have been described above.
The activity sources 160 may also include: a game server 140
for sending information related to an online game and receiv-
ing commands related to that game, and a video chat server
144 for sending information related to a video chat and
receiving commands related to that video chat. The game
server 140 is coupled to the customization system 103 by
signal line 142. The video chat server 144 is coupled to the
customization system 103 by signal line 146.

As shown, the second embodiment for the architecture
200a, 2005 and 200c¢ includes a plurality of client devices
115a-115n, the customization system 103 for extracting and
rendering custom posts and a plurality of activity sources 160.
The system 103 for per-client, per-type customizations is
particularly advantageous because each post is a mini appli-
cation. More specifically, each post type has a corresponding
stream app (application). The stream application is a bundle
of Java, protocol buffers, JavaScript, server and client-side
support, one or more rendering templates (or a set of render-
ing templates) and custom style sheets that define a mini
application for the activity stream. Each stream app uses
common post elements, for example, comment and sharing
actions, author icons, classical texts, abuse reporting, etc. In
some embodiments, the stream app supports share box pre-
view, resharing preview, resharing annotations, collapse/ex-
pand user text, edit user text, edit of embedded code, abuse
reporting/mute/block, options menu items, explanations,
comments, endorsements, and real-time updates. The present
disclosure is particularly advantageous because each stream
app can also implement its own custom behaviors and appear-
ances. In some embodiments, the stream apps are indepen-
dently loaded on demand.

Referring now to FIG. 2A, the system 103 for per-client,
per-type customization according to some embodiments is
shown in more detail. The customization system 103 includes
an extraction pipeline 202 and a rendering pipeline 204. The
extraction pipeline 202 receives information from the client
device 115, processes the information and provides it to an
activity source 160 and then processes information from the
activity source 160 so that it can be provided to the client
device 115. Some embodiments of the extraction pipeline 202
are described in more detail below with reference to FIGS. 2B
and 3B. The operation of the extraction pipeline 202 is also
described below with reference to FIGS. 4-5. The rendering
pipeline 204 receives information and processes it for display
on the web browser 150 of the client device 115. Some
embodiments of the rendering pipeline 204 are described in
greater detail below with reference FIGS. 2C and 3C. The
operation of the rendering pipeline 204 is also described
below with reference to FIGS. 6-8. The customization system
103 is advantageous because it supports faster standalone

US 9,385,979 B1

7

development of independent components, provides common
building block components, isolates core stream develop-
ment from the development of independent components, and
provides easy late loading. In other words, the customization
system 103 provides a coherent framework that is extensible,
provides common building block components, allows mul-
tiple teams to build custom posts standalone and in parallel
and provides support for the multi-client use case.

Referring now to FIG. 2B, the extraction pipeline 202 of
the system 103 for per-client, per-type customization accord-
ing to some embodiments is shown in more detail. In some
embodiments, the extraction pipeline 202 includes: a library
210 of embedded code, an embed converter 214, and a data
type taxonomy 218.

The library 210 of embedded code can be a group of
embedded codes. The embedded code provides a way to
represent, transmit, store and render rich structured attach-
ments. In some embodiments, the embedded code is defined
by both client type and activity type. Each of the embedded
codes includes common building block components of com-
mon types, for example, type-specific protocol buffers, a set
of'rendering templates or custom templates, Java, JavaScript,
custom styling, e.g. via custom style sheet systems, etc. One
example of a type-specific protocol buffer is shown below.

message PhotoUpdate {

option (item_type)=IMAGE_OBIECT;
extend EmbedClientltem [optional
photo=N;

PhotoUpdate

optional string url=1
[(in_item scope)=true];

optional string description=2
[(in_item scope)=true];

optional Place content_location=3
[(in_item scope)=true];

optional string thumbnail_url=4
[(in_item scope)=true];

optional string proxied_thumbnail_url=5
[(in_item scope)=false,

(presenter)=THUMBNAIL_IMAGE_PROXYT;

The embedded codes are used by the stream applications for
their canonical representation of the attached content. In
some embodiments, the stream out may optionally process,
transform color render or suppress embedded data for display
purposes. Further, in some embodiments, the embedded data
is used to represent non-plain text data attached to a post when
that data represents something that can be displayed or
manipulated in the stream, or something that makes sense to
first or third party users. Example embedded code types
include: plain text, video, photo, photo album, web link,
location, video conference, event, music album or song, video
playlist, etc.

The embed converter 214 can be software or routines for
processing the stream apps and providing information to the
client device 115. More specifically, the embed converter 214
uses the library of embedded code 210 and the data type
taxonomy 218 to produce content in a format displayable on
the web browser 150. The embed converter 214 receives data
from the activity sources 160 for presentation on the client
device 115 according to the data type taxonomy 218. In other
words, the activity sources 160 provide data in the data type
taxonomy 218. The embed converter 214 extracts the data
from the data type taxonomy 218 and then utilizes the library
210 of embedded code to present the data on the web browser
150. More specifically, the embed converter 214 formats and
sends the data according to the type specific protocol buffers

10

20

25

30

35

40

45

50

55

60

65

8

of the associated embedded code. For a given activity type
and a given client type, the embed converter 214 may also
format the data so that it is presented in an attractive and
appropriate manner on the client device 115. For example, the
embed converter 214 may format the data in a first manner so
that it is suitable where the client device 115 is a mobile phone
or the embed converter 214 can format the data in a second
manner so that it is suitable for a desktop. In summary, the
embed converter 214 is alossless converter that retrieves data
from the data type taxonomy 218 and uses the library 210 of
embedded code that specifies presentation to output informa-
tion to the client devices 115. The operation of the embed
converter 214 will be better understood with reference to
description below and FIGS. 4 and 5.

The data type taxonomy 218 is a classification and hierar-
chical organization of data types. In some embodiments, the
data type taxonomy 218 is a hierarchy such as schema.org.
The activity sources 160 provide data to the extraction pipe-
line 202 in data structures that comply with the shared defi-
nitions in the data type taxonomy 218. In some embodiments,
the data type taxonomy 218 includes a protocol buffer that
includes a flat name space of the known data fields. In some
embodiments, a protocol buffer is a serialization format with
an interface description language. Each protocol buffer has a
type field that includes a subset of data type taxonomy 218
fields valid for that protocol buffer. The type field is arepeated
field, indicating the inheritance hierarchy of that type (e.g.,
thing>creative work>article>blog post).

Referring now to FIG. 2C, the rendering pipeline 204 of the
system 103 for per-client, per-type customization according
to some embodiments of the customization system 103 is
shown in more detail. The rendering pipeline 204 includes
custom template storage 156, a decoder 162 and an encoder
164. The operation of the rendering pipeline 204 and its
components will be described in more detail below with
reference to FIGS. 3C and 6-8. The encoder 164 is coupled to
the decoder 162 to send activity data for the web browsers
150. The encoder 164 is also coupled to the activity sources
160 to receive activity information which it sends to the
decoder 162 which in turn translates the activity information
into the activity stream. The decoder 162 is also coupled to the
custom template storage 156 to receive information about
how the activity information is to be presented on the web
browser 150.

Example System

FIG. 3A is a block diagram illustrating a hardware archi-
tecture for a customization system 103 according to some
embodiments of the present disclosure. In some embodi-
ments, the system 103 comprises: a network interface module
233, aprocessor 235, a memory 237, astorage 239, the library
210 of embedded code, the custom template storage 156 and
an activity database 360. The library 210 of embedded code,
the activity database 360 and the custom template storage 156
are depicted using dashed lines to indicate that, in some
embodiments, the library 210 of embedded code, the activity
database 360 and the custom template storage 156 are part of
the storage 239. These components of the system 103 are
communicatively coupled by a bus 220.

The network interface module 233 is coupled to the net-
work 105 by signal line 102 and to the bus 220. The network
interface module 233 includes ports for wired connectivity
such as but not limited to USB, SD, or CAT-5, etc. The
network interface module 233 links the processor 235 to the
network 105 that may in turn be coupled to other processing
systems. The network interface module 233 provides other
conventional connections to the network 105 using standard
network protocols such as TCP/IP, HTTP, HTTPS and SMTP.

US 9,385,979 B1

9

In other embodiments, the network interface module 233
includes a transceiver for sending and receiving signals using
Wi-Fi, Bluetooth® or cellular communications for wireless
communication.

The processor 235 comprises an arithmetic logic unit, a
microprocessor, a general purpose controller or some other
processor array to perform computations and provide elec-
tronic display signals to a display device. The processor 235
is coupled to the bus 220 for communication with the other
components. Processor 235 processes data signals and may
comprise various computing architectures including a com-
plex instruction set computer (CISC) architecture, a reduced
instruction set computer (RISC) architecture, or an architec-
ture implementing a combination of instruction sets.
Although only a single processor is shown in FIG. 3A, mul-
tiple processors may be included. Other processors, operating
systems, sensors, displays and physical configurations are
possible.

The memory 237 stores instructions and/or data that may
be executed by the processor 235. The memory 237 is coupled
to the bus 220 for communication with the other components.
The instructions and/or data may comprise code for perform-
ing any and/or all of the techniques described herein. The
memory 237 may be a dynamic random access memory
(DRAM) device, a static random access memory (SRAM)
device, flash memory or some other memory device known in
the art.

In the illustrated embodiment, the memory 237 includes
the extraction pipeline 202 and the rendering pipeline 204.
The extraction pipeline 202 and the rendering pipeline 204
are described in more detail below with reference to FIGS. 3B
and 3C, respectively.

In some embodiments, the storage 239 stores data, infor-
mation and instructions used by the customization system
103. Such stored information includes information about
users, information about messages, stream applications, and
other information retrieved from the activity sources 160. In
some embodiments, the storage 239 also stores data and other
information utilized by the customization system 103 from
the client devices 115. In another embodiment, the library 210
of'embedded code or the custom template storage 156 is part
of'the storage 239. The storage 239 is a non-volatile memory
or similar permanent storage device and media such as a hard
disk drive, a floppy disk drive, a CD-ROM device, a DVD-
ROM device, a DVD-RAM device, a DVD-RW device, a
flash memory device, or some other mass storage device
known in the art for storing information on a more permanent
basis. The storage 239 is coupled to the bus 220 for commu-
nication with other components of the customization system
103.

In some embodiments (See also FIG. 3C), the storage 239
stores information retrieved by the activity streams backend
154, in particular, collector modules 352, 354, 356 and 358
and the activity database 360. In some embodiments, the
storage 239 also stores data and other information utilized by
the activity streams front end 152. The storage 239 is coupled
by the bus 220 for communication with other components
152,154, 156,233, 235 and 237 of the rendering pipeline 204.

The library 210 of embedded code has been described
above with reference to FIG. 2B. The library 210 of embed-
ded code has a similar operation function here. The library
210 of embedded code is coupled to the bus 220 for coopera-
tion with other components of the system 103. The custom
template storage 156 and the activity database 360 are also
coupled to the bus 220 for communication with other com-
ponents of the system 103. The custom template storage 156

10

15

20

25

30

35

40

45

50

55

60

65

10

and the activity database 360 are described in more detail
below with reference to FIG. 3C.
Extraction Pipeline 202

FIG. 3B is a block diagram illustrating an extraction pipe-
line 202 according to some embodiments of the present dis-
closure. In some embodiments, the extraction pipeline 202
includes an activity streams backend 216 and an activity
streams front end 212 that communicate over the software
communication mechanism 221. Software communication
mechanism 221 may be an object bus (such as CORBA),
direct socket communication (such as TCP/IP sockets)
among software modules, remote procedure calls, UDP
broadcasts and receipts, HI'TP connections, function or pro-
cedure calls, etc. Further, any or all of the communication
could be secure (SSH, HTTPS, etc). The software communi-
cation can be implemented on any underlying hardware, such
as a network, the Internet, a bus 220, a combination thereof,
etc.

The activity streams backend 216 includes an activity
source interface module 302 and the data type taxonomy 218.
The activity source interface module 302 may be software or
routines executable by the processor 235 to receive or retrieve
activity information from the activity sources 160. The activ-
ity source interface module 302 cooperates with the data type
taxonomy 218 to process data and other information, and
sends it to the activity streams front end 212. In some embodi-
ments, the activity source interface module 302 receives
information from the activity sources 160 and stores it in a
data format consistent with the data type taxonomy 218. In
some embodiments, the activity streams backend 216 also
includes a second embed converter (not shown) to receive and
process information from the activity sources 160 and then
store the processed data according to the data type taxonomy
218. The data type taxonomy 218 has been described above
with reference to FIG. 2B and has the similar function or
operation here. The activity source interface module 302 and
the data type taxonomy 218 are coupled for communication
with the other components of the extraction pipeline 202 by
the software communication mechanism 221.

The activity streams front end 212 comprises the embed
converter 214 and a client interface module 304. The embed
converter 214 has been described above and has the same or
similar functionality here. The embed converter 214 is
coupled to the software communication mechanism 221 for
communication with the other components of the extraction
pipeline 202. In one embodiment, the client interface module
304 is communicatively coupled to the library 210 of embed-
ded code. The client interface module 304 may be software or
routines executable by the processor 235 to communicate
with the client device 115. For example, the client interface
module 304 receives links and indication of the client type
from the client device 115. The client interface module 304
also cooperates with the embed converter 214 to send infor-
mation and formatting data such as XML to the client browser
150 for presentation to the user. The client interface module
304 is also coupled to the software communication mecha-
nism 221 for communication and cooperation with the other
components of the extraction pipeline 202.

Rendering Pipeline 204

FIG. 3C is a block diagram illustrating the rendering pipe-
line 204 according to some embodiments of the present dis-
closure. In some embodiments, the rendering pipeline 204
comprises: an activity streams backend 154 and an activity
streams front end 152 that communicate over the software
communication mechanism 221.

In some embodiments, the activity streams backend 154
comprises a document activity collector 352, a calendar activ-

US 9,385,979 B1

11

ity collector 354, a social network activity collector 356, an
other source activity collector 358, an activity database 360,
and the encoder 164. These components 352, 354, 356, 358,
360 and 164 are coupled to the software communication
mechanism 221 for communication with each other and other
components of the rendering pipeline 204.

The document activity collector 352 may be software or
routines for interacting with a document system coupled to
the activity streams backend 154 via the network 105. Insome
embodiments, the document activity collector 352 interacts
with a document management system to retrieve information
such as user interactions with documents, which documents
were reviewed or edited, and how much time was spent inter-
acting with a document, etc. The document activity collector
352 in some embodiments interacts with a credential module
(not shown) to retrieve the user’s login name and password as
well as any other information necessary to access the docu-
ment system. The document activity collector 352 also stores
information that has been retrieved in the activity database
360. The document activity collector 352 is coupled for com-
munication with other document servers and the storage 239.
It should be recognized that even though the document activ-
ity collector 352 has been described above as connecting and
extracting information from a single document system, the
document activity collector 352 may perform the same opera-
tion for a plurality of document systems that is utilized by a
particular user.

The calendar activity collector 354 may be software or
routines for interacting with the profile server 127 coupled to
the activity streams backend 154 via the network 105. Insome
embodiments, the calendar activity collector 354 interacts
with the profile server 127 to retrieve profile information such
as calendar events. In some embodiments, the profile server
127 is a free time management web application. The calendar
activity collector 354 also stores received calendar activity
information in the activity database 360. The calendar activity
collector 354 also sends commands and instructions to the
profile server 127 to change calendar events, add calendar
events, modify parties associated with events, delete events,
etc.

The social network activity collector 356 may be software
orroutines for interacting with the one or more social network
servers 101 or systems. In some embodiments, the social
network activity collector 356 is coupled to the network 105
for communication and interaction with the social network
server 101, the social network application 109 and the social
graph 125. The social network activity collector 356 is similar
to the calendar activity collector module 354 except that it
collects activity information related to auser’s interaction and
use of a social network. The social network activity collector
356 interacts with a credential module to retrieve the user’s
login and password as well as other information necessary to
access the social network application 109 and the social graph
125. The social network activity collector 356 retrieves and
collects activity information about messages sent, messages
received, information posted, posted information reviewed,
change in status of friends, addition of connections, removal
of'connections, friend requests, and any other activity that can
be undertaken by the user on the social network. The social
network activity collector 356 also collects information from
other individuals that are important or linked to the user. In
some embodiments, the application interface (API) of the
social network is used by the social network activity collector
356 to extract information. Thus, it will recognize that the
social network activity collector 356 can retrieve any infor-
mation related to the user from the social network. The social
network activity collector 356 stores the information it col-

10

15

20

25

30

35

40

45

55

60

65

12

lects in the activity database 360. The social network activity
collector 356 is coupled by the software communication
mechanism 221. Example activities include friend requests, a
post to a source being monitored, or any other activity on the
social network of importance to the user. The social network
activity collector 356 also interacts with the social network to
respond to any activity such as accepting the friend request,
replying to a post or any other action on the social network
that is possible in response to the activity.

The other source activity collector 358 may be software or
routines for interacting with and extracting information from
any other electronic communication system or any other
activity sources 160. The other source activity collector 358
has the credentials and the application interface for interact-
ing with the other activity sources 160. The other source
activity collector 358 monitors the other activity sources 160
for activities of which the user wants to be notified and also
can take any action with regard to the activities that is allowed
by the other activity sources 160. The other source activity
collector 358 collects information related to the user’s inter-
action with those other systems. The other source activity
collector 358 stores the information collected in the activity
database 360. Example other sources 160 include the third
party server 107, the micro-blogging server 121, the SMS/
MMS server 129, the IM server 131, the search server 135 and
the web server 137.

The activity database 360 is data storage for storing infor-
mation received from any of the activity sources 160. In some
embodiments, the activity database 360 is a database orga-
nized by user. For each user, the activity database 360 stores
any activity information received from any of the activity
sources 160. For example, this can include documents, docu-
ment status, document interaction statistics, and social net-
work activities such as posts, shares, invitations, status
changes etc. The activity database 360 is coupled for com-
munication with the activity collectors 352, 354, 356 and 358.
The activity database 360 is also coupled to the activity
streams front end 152 to provide activity information respon-
sive to queries from the client devices 115 and to provide the
raw data used to generate the activity stream.

The encoder 164 may be software or routines for encoding
activity information and an activity type. In some embodi-
ments, the encoder 164 cooperates with the other components
of the activity streams backend 154 to receive activity infor-
mation and an associated activity type. In some embodiments,
there are multiple activity types such as an activity type for
posts from a particular source (e.g., a social network), and an
activity type for posts from a second source (e.g., a blog), an
activity type for information that has a unique set of actions
(e.g., the sharing of a photo), an activity type for a particular
online service, etc. Thus the activity types may be defined by
the source of the information; the type of information and the
manner in which it should be presented; and the action or the
group of actions that may be taken in response to the infor-
mation. The encoder 164 is coupled to the other components
of the activity streams backend 154 to receive activity infor-
mation. The encoder 164 is also coupled to receive the activity
type for the information either from the activity sources 160
or the activity database 360 or by analysis of the activity
information. The encoder 164 encodes the activity informa-
tion and the activity type into encoded information. For
example, the encoder 164 serializes the activity information
into an encoded message protocol buffer (general data for-
mat). In some embodiments, the encoder 164 stores the
encoded information into the activity database 360 for access

US 9,385,979 B1

13

by the activity stream front end 152. In another embodiment,
the encoder 164 also scrubs the information or anonymizes it
before encoding.

The activity streams front end 152 is software or routines
for processing requests that are received from the client
devices 115. The activity streams front end 152 is coupled for
communication with the client devices 115, in particular, the
web browser 150. The activity streams front end 152 receives
and processes requests from the client devices 115 for an
activity stream. The activity streams front end 152 serves as a
controller to process requests for activity streams, to send
activity streams, to send formatting information for the activ-
ity streams, to send control signals to and from the client
devices 115, and to send user interaction information to the
activity streams backend 154. The activity streams front end
152 is coupled to receive activity stream data from the activity
streams backend 154 and generate an activity stream for the
user. In some embodiments, the activity streams front end 152
includes a decoder 162. The activity streams front end 152
retrieves activity stream information in an encoded or serial-
ized format from the activity streams backend 154. The
decoder 162 decodes or de-serializes the encoded informa-
tion from the activity streams backend 154 into data for the
custom post and an activity type. The activity streams front
end 152 is also coupled to the custom template storage 156 to
retrieve and use templates and scripts or send templates and
scripts to the client devices 115 as requested. The activity
streams frontend 152 also passes on commands to the activity
streams backend 154 for transmission to and execution by the
activity sources 160.

The custom template storage 156 is data storage for storing
information about different templates that can be used to
present activity information to the user. In some embodi-
ments, the customization system 103 has defined a number of
different activity types. Each of the activity types includes a
customized template for displaying information related to
that activity type. In some embodiments, the customized tem-
plate specifies the formatting and types of information dis-
played. The custom template also specifies what other actions
or buttons are presented along with the activity information.
For example, the actions appropriate for a comment post
versus a photo being shared will be different. The custom
template identifies the actions that can be taken with regard to
the activity information and thereby allows customization of
the rendering that is specific to the activity information. The
activity type is also associated with JavaScript or a JavaScript
class for use in rendering the data in the customized template.
This is particularly advantageous because rather than being
limited to a single method for rendering posts or being forced
to create a custom rendering for each individual post, the
custom template storage 156 allows the templates to be
reused according to activity types which are likely to have
similar characteristics. In some embodiments, the post
includes additional type-specific data that can be used to
decide which specific custom template to use. The custom
template storage 156 is coupled for communication with the
activity stream front end 152. In another embodiment, the
custom template storage 156 can be accessed directly by the
client device 115. In some embodiments, the custom template
storage 156 is not required and the templates are compiled
directly into binary files.

One or more of the document activity collector 352, the
calendar activity collector 354, the social network activity
collector 356, the other source activity collector 358, the
encoder 164, the activity streams backend 154, the activity
streams front end 152 and the decoder 162 are executable by
the processor 235. In another embodiment, one or more of the

20

25

30

40

45

14

document activity collector 352, the calendar activity collec-
tor 354, the social network activity collector 356, the other
source activity collector 358, the encoder 164, the activity
streams backend 154, the activity streams front end 152 and
the decoder 162 store data that, when executed by the proces-
sor 235, causes the collectors/modules to perform the opera-
tions described below. In yet another embodiment, one or
more of the document activity collector 352, the calendar
activity collector 354, the social network activity collector
356, the other source activity collector 358, the encoder 164,
the activity streams backend 154, the activity streams front
end 152 and the decoder 162 are instructions executable by
the processor 235 to provide the functionality described
below with reference to FIGS. 6-8. In still another embodi-
ment, one or more of the document activity collector 352, the
calendar activity collector 354, the social network activity
collector 356, the other source activity collector 358, the
encoder 164, the activity streams backend 154, the activity
streams front end 152 and the decoder 162 are stored in the
memory 237 of the customization system 103 and are acces-
sible and executable by the processor 235.
Methods

FIG. 4 is a sequence diagram of a preview action of the
extraction pipeline 202 according to some embodiments of
the present disclosure. F1G. 4 shows the operations performed
by the extraction pipeline 202 and its interaction with the
client device 115 and the activity source 160. FIG. 4 illus-
trates merely one example operation; however, it can be
understood how the other operations are performed by the
extraction pipeline 202 in response to input about an activity
stream from the client device 115 or in response to the activity
information from an activity source 160. Specifically, FI1G. 4
illustrates the processing of input from a share box 402 dis-
played on the browser 150 of the client device 115 and modi-
fications to the appearance of that share box 402 in response
to the receipt of additional activity information by the extrac-
tion pipeline 202. The process begins with the display of the
share box 402 at the client device 115. The user interacts with
the share box 402 and inputs a user supplied URL 404 into the
share box 402. The user also selects a share button (not
shown) from the user interface displayed by the client device
115. This causes the client device 115 to send 406 the user
supplied URL 404 to the customization system 103, in par-
ticular the extraction pipeline 202. In some embodiments, the
client device 115 also sends 406 other information such as the
type of the client device 115. For example, the client device
115 may identify itself as being a desktop browser or a
browser on a mobile device. In some embodiments, both the
type of post or activity and the type of client are determined at
the time the post is created. For example, there may be a
specific field such as update metadata.namespace enumr field
to specify the type of post or activity and the type of client.
The user supplied URL 404 is received at the extraction
pipeline 202, and a link preview action 408 is initiated. In
some embodiments, the link preview action 408 creates a
stream application processed by the extraction pipeline 202.
Processing of the link preview action 408 causes a request
(e.g., an HTTP request) to be sent 410 from the extraction
pipeline 202 to the activity source 160 corresponding to the
user supplied URL 404. The activity source 160 correspond-
ing to the user supplied URL 404 processes 412 the HTTP
request and generates a response, such as an HTML page. The
response, HTML, is sent 414 from the activity source 160 to
the extraction pipeline 202. The extraction pipeline 202 cre-
ates 416 a protocol buffer (proto) based upon the type of
activity or post and/or the type of client from the response
received from the activity source 160. For example, the

US 9,385,979 B1

15

extraction pipeline 202 creates a generic schema.org protocol
buffer (proto) 418 by processing the HTML from the activity
source 160, and parses the formatted metadata in the header
of the page. One example of the components of a generic
protocol buffer is described at http://schema.org. In some
embodiments, the generic protocol buffer is stored by the
extraction pipeline 202 for later use. Next, the extraction
pipeline 202 adds 420 embedded code to create a type-spe-
cific protocol buffer (proto) 422. For example, the embed
converter 214 processes the generic schema.org protocol
buffer 418 and then converts it to a type-specific protocol
buffer 422 on the server based upon the activity type and
client type. For example, the embedded code can include
Java, protocol bufters, JavaScript, server and client-side sup-
port, rendering template, custom style sheets, GSS, other
templates and information. In some embodiments, the type-
specific protocol buffer 422 is stored by the extraction pipe-
line 202 for later use. The type-specific protocol bufter 422 is
then sent 424 from the extraction pipeline 202 to the client
device 115. The client device 115 processes the type-specific
protocol buffer 422 to generate the type specific template 428
that is shown by the browser (not shown) in the update pre-
view template 426. FI1G. 4 illustrates a path for information to
pass from the activity source 160 to the client device 115
through the extraction pipeline 202. In this path, the informa-
tion is received by the extraction pipeline 202, converted to a
generic protocol buffer and then modified into a type-specific
protocol buffer (using activity type and client type as an index
to a library of embedded code) that is sent to the client device
115. The architecture of the present disclosure is advanta-
geous because this two-step conversion process can be uti-
lized for any information that is sent from the activity source
160 to the client device 115 by using the data type taxonomy
218 and the library 210 of embedded code. It should be
recognized that any action or information can be sent from the
activity source 160 to the client device 115 in a similar man-
ner.

FIG. 5 is a sequence diagram of a share operation of the
extraction pipeline 202 according to some embodiments of
the present disclosure. FIG. 5 shows the actions performed by
the extraction pipeline 202 in a sharing operation and its
interaction with the client device 115 and the activity source
160. More generally, FIG. 5 illustrates a process for sending
information from the client device 115 to the activity source
160. A sharing operation begins with the display of a share
box 402 by the client device 115. The sharing operation may
also be initiated by other APIs or other code. The user inputs
information that he or she would like to share (Share infor-
mation 502) within the share box 402. The user selects a share
operation such as by selecting a button associated with the
share box 402. This causes the client device 115 to send 504
the share information 502 in the share box 402 to the extrac-
tion pipeline 202. For example, the client device 115 may
send an XML HTTP request to the extraction pipeline 202. In
some embodiments, the client device 115 generates a type-
specific protocol buffer that is sent 504 to the extraction
pipeline 202. The extraction pipeline 202 initiates 506 a post
action. The extraction pipeline 202 generates 508 (or extracts
from the XML HTTP request) a type-specific protocol buffer
(proto) 510. Next, the extraction pipeline 202 converts 512
the type-specific protocol buffer 510 to a generic protocol
buffer 514. The extraction pipeline 202 then sends 516 the
generic protocol buffer (proto) 514 to the activity source 160,
and the activity source 160 creates 518 an activity. The archi-
tecture of the present disclosure is advantageous because this
two-step conversion process can be utilized for any informa-
tion that is sent from the client device 115 to the activity

10

15

20

25

30

35

40

45

50

55

60

65

16

source 160 by using the embed converter 214. It should be
recognized that the sharing action is used merely as an
example, and action or information can be sent from the client
device 115 to the activity source 160 in a similar manner.

Referring now to FIG. 6, a method 600 for storing and
rendering custom posts in the activity stream is described.
The method 600 begins by receiving 602 activity information
and an activity type. In some embodiments, a client type is
also retrieved or received. In some embodiments, the activity
streams backend 154 receives this information from the activ-
ity sources 160. In other embodiments, the activity streams
backend 154 receives the activity information from the activ-
ity sources 160 and determines the activity type and the client
type. Next, the method 600 continues by encoding 604 the
information from block 402 and storing it at the activity
streams backend 154. In some embodiments, the data is
immediately sent to the activity streams front end 152. It
should be recognized that the activity streams backend 154
repeatedly performs the above process for posts received
from the activity sources 160. While the present disclosure
will be described in FIGS. 6, 7 and 8 in the context of posts,
it will be appreciated that the same process of typing, encod-
ing and decoding can be applied to any type of activity infor-
mation that is displayable to the user 120 on the client device
115. The method continues at the activity streams front end
152 where the encoded data is received or retrieved 606 from
the activity streams backend 154. The activity streams front
end 152 decodes 608 the encoded data to produce the activity
information and the activity type. Based upon the activity
type and the client type, the activity streams front end 152
retrieves 610 a custom template and JavaScript from the
custom template storage 156. The activity streams front end
152 then sends 612 the activity information, the custom tem-
plate and the script to the client device 115. Finally, the
method 600 completes with the client device 115 rendering
614 a custom post using the activity information, the custom
template and the script.

Referring now to FIG. 7, some embodiments of a method
700 for storing activity information and an activity type (and/
or a client type) in an activity streams backend 154 is
described. The method 700 begins by receiving 702 data or
activity information from one or more of the activity sources
160 at the activity streams backend 154. In some embodi-
ments, the activity information is a custom protocol buffer or
data map with associations between data and fields. In some
embodiments, the same custom protocol buffer is used for
activity information. The data may also include a client type.
Then the method 700 determines 704 an activity type associ-
ated with the received information. In some embodiments, the
activity type is provided by the activity sources 160. In other
embodiments, the activity streams backend 154 selects an
activity type for the activity information based upon one or
more of the source of the activity information, the content of
the act of information, the functionality associated with the
activity information, and the format for displaying the activ-
ity information. In some embodiments, there are a number of
predefined activity types with associated formatting, func-
tionality, data fields and JavaScript or JavaScript classes.
Either the custom template or associated script for the activity
type has already been stored in the custom template storage
156 at some time prior, or optionally, the activity streams
backend 154 receives the custom template and associated
script from the activity sources 160 and stores 706 them in the
custom template storage 156. Then the method 700 encodes
or serializes 708 the activity information and the activity type
into encoded data. In some embodiments, the data is scrubbed
710. In particular when the activity streams backend 154

US 9,385,979 B1

17

stores information from a plurality of unrelated third-party
sources, the data is scrubbed for security purposes. Finally,
the encoded/serialized data is stored in the activity database
360 of the activity streams backend 154. In another embodi-
ment, the encoded/serialized data is stored 712 to a location
accessible by both the activity streams backend 154 and the
activity streams front end 152. In yet another embodiment,
the encoder/serialized data is sent 712 to the activity streams
front end 152.

Referring now to FIG. 8, some embodiments of a method
800 for rendering custom posts in the activity stream will be
described. The method 800 begins by retrieving 802 encoded
data from the activity streams backend 154. The encoded data
is de-serialized 804 to produce the activity information and an
activity type. In some embodiments, the activity information
and the activity type are in the form of a custom protocol
buffer (proto) with defined fields and corresponding data for
those fields. In particular, it should be noted that one of the
fields that identifies the activity type is a namespace view.
Next, the method 800 sends 806 the activity information and
the activity type to the client device 115. In some embodi-
ments, the activity streams front end 152 does this by sending
the custom protocol buffer (proto) to the client device 115.
Next, either the client device 115 or the activity streams front
end 152 extracts 808 the namespace field value from the
custom protocol buffer. The value in the namespace field and
the client type are used 810 to identify which custom tem-
plate, custom styling and associated JavaScript to retrieve
from the custom template storage 156. For each namespace
value, there may be numerous different custom templates,
custom styling and associated JavaScript according to the
client type. Then the client device 115 or the activity streams
front end 152 retrieves 812 the custom template and custom
styling from the custom template storage 156 and installs
them with associated JavaScript for interactivity. Finally the
method 800 completes by populating 814 the custom tem-
plate with data and presents it on the display of the client
device 115.

In the above description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the disclosure. It will be apparent,
however, that the disclosure can be practiced without these
specific details. In other instances, structures and devices are
shown in block diagram form in order to avoid obscuring the
disclosure. Moreover, the present disclosure is described
below primarily in the context of a social network; however,
it should be understood that the present disclosure applies to
any type of communication and can be used to present posts
or any type of communication.

Reference in the specification to “one embodiment,” “an
embodiment,” “some embodiments” or “other embodiments”
means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at
least one embodiment of the present disclosure. The appear-
ances of the phrase “in one embodiment,” “some embodi-
ments” or “other embodiments™ in various places in the speci-
fication are not necessarily all referring to the same
embodiment.

Some portions of the detailed descriptions that follow are
presented in terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those in the data processing arts to most
effectively convey the substance of their work to others. An
algorithm is here, and generally, conceived to be a self con-
sistent sequence of steps leading to a desired result. The steps
are those requiring physical manipulations of physical quan-

5

10

20

25

30

35

40

45

55

60

65

18

tities. Usually, though not necessarily, these quantities take
the form of electrical or magnetic signals capable of being
stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally
for reasons of common usage, to refer to these signals as bits,
values, elements, symbols, characters, terms, numbers or the
like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present disclosure also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but is not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic disks, read-only memories (ROMs), random access
memories (RAMs), EPROMs, EEPROMs, magnetic or opti-
cal cards, flash memories including USB keys with non-
volatile memory or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

The disclosure can take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the disclosure is implemented in soft-
ware, which includes but is not limited to firmware, resident
software, microcode, etc.

Furthermore, the disclosure can take the form of a com-
puter program product accessible from a computer-usable or
computer-readable medium providing program code for use
by or in connection with a computer or any instruction execu-
tion system. For the purposes of this description, a computer-
usable or computer-readable medium can be any apparatus
that can include, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices

US 9,385,979 B1

19

through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur-
rently available types of network adapters.

Finally, the algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general-purpose systems may be used
with programs in accordance with the teachings herein, or it
may prove convenient to construct more specialized appara-
tus to perform the required method steps. The required struc-
ture for a variety of these systems will appear from the
description below. In addition, the present disclosure is not
described with reference to any particular programming lan-
guage. It will be appreciated that a variety of programming
languages may be used to implement the teachings of the
disclosure as described herein.

The foregoing description of the embodiments of the
present disclosure has been presented for the purposes of
illustration and description. It is not intended to be exhaustive
orto limit the present disclosure to the precise form disclosed.
Many modifications and variations are possible in light of the
above teaching. It is intended that the scope of the present
disclosure be limited not by this detailed description, but
rather by the claims of'this application. As will be understood
by those familiar with the art, the present disclosure may be
embodied in other specific forms without departing from the
spirit or essential characteristics thereof. Likewise, the par-
ticular naming and division of the modules, routines, features,
attributes, methodologies and other aspects are not manda-
tory, and the mechanisms that implement the present disclo-
sure or its features may have different names, divisions and/or
formats. Furthermore, as will be apparent to one of ordinary
skill in the relevant art, the modules, routines, features,
attributes, methodologies and other aspects of the present
disclosure can be implemented as software, hardware, firm-
ware or any combination of the three. Also, wherever a com-
ponent, an example of which is a module, of the present
disclosure is implemented as software, the component can be
implemented as a standalone program, as part of a larger
program, as a plurality of separate programs, as a statically or
dynamically linked library, as a kernel loadable module, as a
device driver, and/or in every and any other way known now
or in the future to those of ordinary skill in the art of computer
programming. Additionally, the present disclosure is in no
way limited to implementation in any specific programming
language, or for any specific operating system or environ-
ment. Accordingly, the disclosure of the present disclosure is
intended to be illustrative, but not limiting, of the scope of the
present disclosure, which is set forth in the following claims.

What is claimed is:
1. A computer-implemented method for processing posts
in activity streams, comprising:

receiving, with one or more computing devices, a client
type specifying a type of a client device;

receiving, with the one or more computing devices, activity
information from an activity source;

receiving, with the one or more computing devices, an
activity type;

creating, with the one or more computing devices, a first
protocol buffer using the activity type and the activity
information;

selecting, with the one or more computing devices, embed-
ded code from a library of embedded code based in part
upon the client type and the activity type;

adding, with the one or more computing devices, the
embedded code to the first protocol buffer to create a
second protocol buffer; and

15

30

35

40

45

50

65

20

sending, with the one or more computing devices, the
second protocol buffer for rendering of the activity infor-
mation.

2. The method of claim 1 further comprising storing, with
the one or more computing devices, the first protocol buffer at
an extraction pipeline.

3. The method of claim 1 wherein creating the first protocol
buffer also uses the client type to determine the first protocol
buffer.

4. The method of claim 1 wherein the first protocol buffer
is a generic schema.org protocol buffer.

5. The method of claim 1 further comprising storing, with
the one or more computing devices, the second protocol
buffer at an extraction pipeline.

6. The method of claim 1 wherein the second protocol
buffer is a type-specific protocol buffer.

7. The method of claim 1 wherein the embedded code
includes a type-specific protocol butfer, Java, JavaScript, one
or more custom templates, and custom styling.

8. The method of claim 1 wherein the first protocol buffer
is a serialization format with an interface description lan-
guage.

9. A computer program product comprising a non-transi-
tory computer usable medium including a computer readable
program, wherein the computer readable program when
executed on a computer causes the computer to:

receive a client type specifying a type of a client device;

receive activity information from an activity source;

receive an activity type;

create a first protocol buffer using the activity type and the

activity information;

select embedded code from a library of embedded code

based in part upon the client type and the activity type;
add the embedded code to the first protocol buffer to create
a second protocol buffer; and

send the second protocol buffer for rendering of the activity

information.

10. The computer program product of claim 9, wherein the
computer readable program when executed on the computer
also causes the computer to store the first protocol buffer at an
extraction pipeline.

11. The computer program product of claim 9, wherein the
client type is used to determine the first protocol buffer.

12. The computer program product of claim 9, wherein the
first protocol buffer is a generic schema.org protocol butfer.

13. The computer program product of claim 9, wherein the
computer readable program when executed on the computer
also causes the computer to store the second protocol buffer at
an extraction pipeline.

14. The computer program product of claim 9, wherein the
second protocol buffer is a type-specific protocol buffer.

15. The computer program product of claim 9, wherein the
embedded code includes a type-specific protocol bufter, Java,
JavaScript, one or more custom templates, and custom styl-
ing.

16. The computer program product of claim 9, wherein the
first protocol buffer is a serialization format with an interface
description language.

17. A computer-implemented method for processing posts
in an activity stream, executing on one or more computing
devices, the method comprising:

receiving, with the one or more computing devices, a client

type specifying a type of a client device;

receiving, with the one or more computing devices, an

activity type;

receiving, with the one or more computing devices, activity

information from the client device;

US 9,385,979 B1

21

creating, with the one or more computing devices, a type-
specific protocol buffer based in part upon the client type
and the activity type;
select embedded code from a library of embedded code
based in part upon the client type and the activity type:
converting, with the one or more computing devices, the
type-specific protocol buffer to a generic protocol buffer
using the selected embedded code; and
sending, with the one or more computing devices, the
generic protocol buffer to an activity source, the activity
source being different from the client device.
18. The method of claim 17 wherein the activity type is a
post of information.
19. The method of claim 17 wherein the generic protocol
buffer is a generic schema.org protocol buffer.
20. A system for processing posts in an activity stream, the
system comprising:
one or More processors;
the one or more processors being configured to:
receive a client type specifying a type of a client device;
receive activity information from an activity source;
receive an activity type;
create a first protocol buffer using the activity type and
the activity information;
select embedded code from a library of embedded code
based in part upon the client type and the activity type;

5

10

15

20

22

add the embedded code to the first protocol buffer to
create a type-specific protocol buffer; and

send the type-specific protocol buffer to the client device
for rendering of the activity information.

21. The system of claim 20, wherein the activity source is
one or more from a group of a social network server, a third
party server, a micro-blogging server, a profile server, a SMS/
MMS server, an IM server, a search server and a web server.

22. The system of claim 20, wherein the embedded code
includes an associated script, and a data map with associa-
tions between data and fields.

23. The system of claim 20, wherein the embedded code is
retrieved from a library of embedded code, and the library of
embedded code includes a plurality of customized embedded
codes, each ofthe customized embedded codes for processing
information related to a specific activity type.

24. The system of claim 20, wherein the one or more
processors are further configured to communicate with the
activity source and provide activity information to a data type
taxonomy.

25. The system of claim 20, wherein the one or more
processors are further configured to communicate with the
client device and determine the client type.

#* #* #* #* #*

